Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution.

نویسندگان

  • D K Worthylake
  • S Prakash
  • L Prakash
  • C P Hill
چکیده

The Saccharomyces cerevisiae ubiquitin-conjugating enzyme (UBC) Rad6 is required for several functions, including the repair of UV damaged DNA, damage-induced mutagenesis, sporulation, and the degradation of cellular proteins that possess destabilizing N-terminal residues. Rad6 mediates its role in N-end rule-dependent protein degradation via interaction with the ubiquitin-protein ligase Ubr1 and in DNA repair via interactions with the DNA binding protein Rad18. We report here the crystal structure of Rad6 refined at 2.6 A resolution to an R factor of 21.3%. The protein adopts an alpha/beta fold that is very similar to other UBC structures. An apparent difference at the functionally important first helix, however, has prompted a reassessment of previously reported structures. The active site cysteine lies in a cleft formed by a coil region that includes the 310 helix and a loop that is in different conformations for the three molecules in the asymmetric unit. Residues important for Rad6 interaction with Ubr1 and Rad18 are on the opposite side of the structure from the active site, indicating that this part of the UBC surface participates in protein-protein interactions that define Rad6 substrate specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions.

The RAD6 gene of Saccharomyces cerevisiae is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. RAD6 protein is a ubiquitin-conjugating enzyme (E2) that has been shown to attach multiple molecules of ubiquitin to histones H2A and H2B. We have now examined whether the E2 activity of RAD6 is involved in its various biological functions. Since the formation of a thioester ad...

متن کامل

Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle.

The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating (E2) enzyme and is required for the repair of damaged DNA, mutagenesis, and sporulation. Here, we report our studies on the regulation of RAD6 gene expression after UV damage, during the mitotic cell cycle, in meiosis, and following heat shock and starvation. RAD6 mRNA levels became elevated in cells exposed to UV light, ...

متن کامل

Role of a non-canonical surface of Rad6 in ubiquitin conjugating activity

Rad6 is a yeast E2 ubiquitin conjugating enzyme that monoubiquitinates histone H2B in conjunction with the E3, Bre1, but can non-specifically modify histones on its own. We determined the crystal structure of a Rad6∼Ub thioester mimic, which revealed a network of interactions in the crystal in which the ubiquitin in one conjugate contacts Rad6 in another. The region of Rad6 contacted is located...

متن کامل

Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase.

The ubiquitin-conjugating enzymes HR6A and HR6B are the two mammalian homologs of Saccharomyces cerevisiae RAD6. In yeast, RAD6 plays an important role in postreplication DNA repair and in sporulation. HR6B knockout mice are viable, but spermatogenesis is markedly affected during postmeiotic steps, leading to male infertility. In the present study, increased apoptosis of HR6B knockout primary s...

متن کامل

The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae.

It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 11  شماره 

صفحات  -

تاریخ انتشار 1998